
NREL | 1

Slurm: New NREL
Capabilities

HPC Operations March 2019

Presentation by: Dan Harris

Sections

1
2
3
4
5

Slurm Functionality Overview
Eagle Partitions by Feature
Job Dependencies and Job Arrays
Job Steps
Job Monitoring and Troubleshooting

https://www.nrel.gov/hpc/training.html
NREL | 2

https://www.nrel.gov/hpc/training.html

Slide Conventions

• Verbatim command-line interaction:
“$” precedes explicit typed input from the user.
“↲” represents hitting “enter” or “return” after input to execute it.
“…” denotes text output from execution was omitted for brevity.
“#” precedes comments, which only provide extra information.

$ ssh hpc_user@eagle.nrel.gov↲
…

Password+OTPToken: # Your input will be invisible

• Command-line executables in prose:
“The command scontrol is very useful.”

NREL | 3

Eagle Login Nodes

Login DAV

eagle.hpc.nrel.gov eagle-dav.hpc.nrel.gov

Internal External (Requires OTP Token)
Login DAV

eagle.nrel.gov eagle-dav.nrel.gov

Direct Hostnames
Login

el1.hpc.nrel.gov
el2.hpc.nrel.gov
el3.hpc.nrel.gov

DAV
ed1.hpc.nrel.gov
ed2.hpc.nrel.gov
ed3.hpc.nrel.gov

NREL | 4

http:eagle-dav.nrel.gov
http:eagle.nrel.gov

Sections

1
2
3
4
5

Slurm Overview
Eagle Partitions by Feature
Job Dependencies and Job Arrays
Job Steps
Job Monitoring and Troubleshooting

https://www.nrel.gov/hpc/eagle-user-basics.html
NREL | 5

https://www.nrel.gov/hpc/eagle-user-basics.html

NREL | 6

What is Slurm

• Slurm – Simple Linux Utility for Resource Management

• Development started in 2002 at Lawrence Livermore as a
resource manager for Linux clusters

• Over 500,000 lines of C code today
• Used on many of the world's largest computers

• Active global user community

https://slurm.schedmd.com/overview.html
NREL | 7

https://slurm.schedmd.com/overview.html

Why Slurm?

Open source (GPLv2, on Github) FAST!

Centralized configuration
System administrator friendly

SchedMD Highly
Commercial Configurable
Support

Scalable Fault-tolerant (no single point of failure)

NREL | 8

Slurm Basics - Submission

• sbatch – Submit script to scheduler for execution
– Script can contain some/all job options
– Batch jobs can submit subsequent batch jobs

• srun - Create a job allocation (if needed) and launch a job step
(typically an MPI job)
– If invoked from within a job allocation, srun launches application

on compute nodes (job step), otherwise it will create a job
allocation

– Thousands of job steps can be run serially or in parallel within a
job

– srun can use a subset of the jobs resources
NREL | 9

Slurm Basics -Submission

• salloc – Create a job allocation and start shell (interactive)
– We have identified a bug with our configuration. Your mileage may vary

using salloc. Our recommended method for interactive jobs is:

• sattach – Connect stdin/out/err for an existing job step

Note: The job allocation commands (salloc, sbatch, and srun) accept almost
identical options. There are a handful of options that only apply to a
subset of these commands (e.g. batch job requeue and job array
options)

NREL | 10

$ srun –A <account> -t <time> [...] --pty $SHELL↲

NREL | 11

Basic sbatch Example Script

$ cat myscript.sbatch
#!/bin/bash
#SBATCH --account=<allocation>
#SBATCH --time=4:00:00
#SBATCH --job-name=job
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=8
#SBATCH --mail-user your.email@nrel.gov
#SBATCH --mail-type BEGIN,END,FAIL
#SBATCH --output=job_output_filename.%j.out # %j will be replaced with the job
ID

srun ./myjob.sh

$ sbatch myscript.sbatch

Basic srun Examples

• In our Slurm configuration, srun is preferred over
mpirun

• By default, srun uses all resources of the job allocation
From an interactive job:
$ srun --cpu-bind=cores my_program.sh

• You can also use srun to submit a job allocation
• To obtain an interactive job, you must specify a shell
application as a pseudo-teletype

$ srun -t30 -N5 -A <handle> --pty $SHELL↲

NREL | 12

Simple Linux Utility for Resource Management

• We will host more workshops dedicated to Slurm usage. Please
watch for announcements, as well as our training page:
https://www.nrel.gov/hpc/training.html

• We have drafted extensive and concise documentation
about effective Slurm usage on Eagle:
https://www.nrel.gov/hpc/eagle-running-jobs.html

• See all NREL HPC Workshop content on NREL Github:
https://www.github.com/NREL/HPC

NREL | 13

https://www.nrel.gov/hpc/training.html
https://www.nrel.gov/hpc/eagle-running-jobs.html
https://www.github.com/NREL/HPC

Sections

1
2
3
4
5

Slurm Overview
Eagle Partitions by Feature
Job Dependencies and Job Arrays
Job Steps
Job Monitoring and Troubleshooting

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html
NREL | 14

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html

Eagle Hardware Capabilities

• Eagle comes with additional available hardware

– All nodes have local disk space (1TB SATA) except:
• 78 nodes have 1.6TB SSD

• 20 nodes have 25.6TB SSD (bigscratch)

– The standard nodes (1728) have 96GB RAM

• 288 nodes have 192GB RAM

• 78 nodes have 768GB RAM (bigmem)

– 50 bigmem nodes include Dual NVIDIA Tesla V100 PCIe

16GB Computational Accelerators

NREL | 15

Eagle Partitions

NREL | 16

$ sinfo -o "%10P %.5a %.13l %.16F"
PARTITION AVAIL TIMELIMIT NODES(A/I/O/T)
short up 4:00:00 2070/4/13/2087
standard up 2-00:00:00 2070/4/13/2087
long up 10-00:00:00 2070/4/13/2087
bigmem up 2-00:00:00 74/0/4/78
gpu up 2-00:00:00 32/10/0/42
bigscratch up 2-00:00:00 10/10/0/20
debug up 1-00:00:00 0/13/0/13

There are a number of ways to see the Eagle partitions. You can use
scontrol to see detailed information about partitions

$ scontrol show partition

You can also customize the output of sinfo:

Job Submission Recommendations

To access specific hardware, we strongly encourage requesting by feature
instead of specifying the corresponding partition:

Request 4 “bigmem” nodes for 30 minutes interactively
$ srun -t30 -N4 -A <handle> --mem=200000 --pty $SHELL↲

Request 8 “GPU” nodes for 1 day interactively
$ srun -t1-00 -N8 -A <handle> --gres=gpu:2 --pty $SHELL↲

Slurm will pick the optimal partition (known as a “queue” on Peregrine) based your job’s
characteristics. In opposition to standard Peregrine practice, we suggest that users avoid
specifying partitions on their jobs with -p or --partition.

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html
NREL | 17

https://www.nrel.gov/hpc/eagle-job-partitions-scheduling.html

Resources available and how to request

Resource # of Nodes Request

GPU
44 nodes total

22 nodes per user
2 GPUs per node

--gres=gpu:1
--gres=gpu:2

Big Memory
78 nodes total

40 nodes per user
770 GB max per node

--mem=190000
--mem=500GB

Big Scratch
20 nodes total

10 nodes per user
24 TB max per node

--tmp=20000000
--tmp=20TB

NREL | 18

Job Submission Recommendations cont.

For debugging purposes, there is a “debug” partition. Use it if
you need to quickly test if your job will run on a compute node
with -p debug or --partition=debug

$ srun -t30 -A handle -p debug --pty $SHELL↲

There is now a dedicated GPU partition following the
convention above. Use -p gpu or --partition-gpu

There are limits to the number of nodes in these partitions.
You may use shownodes to quickly view usage.

NREL | 19

Node Availability

NREL | 20

To check the availability of what hardware features are in use,
run shownodes. Similarly, you can run sinfo for more nuanced
output.

$ shownodes↲
partition # free USED reserved completing offline down
------------- - ---- ---- -------- ---------- ------- ----
bigmem m 0 46 0 0 0 0
debug d 10 1 0 0 0 0
gpu g 0 44 0 0 0 0
standard s 4 1967 7 4 10 17
------------- - ---- ---- -------- ---------- ------- ----

TOTALs 14 2058 7 4 10 17
%s 0.7 97.5 0.3 0.2 0.5 0.8

Eagle Walltime

A maximumwalltime is required on all Eagle job submissions. Job
allocations will be rejected if not specified:

$ srun -A handle --pty $SHELL↲
error: Job submit/allocate failed: Time limit specification
required, but not provided

A minimum walltime may allow your job to start sooner using the
backfill scheduler.

100 nodes for 2 days with a MINIMUM time of 36 hours
$ srun –t2-00 –N100 -A handle --time-min=36:00:00 --pty $SHELL↲

NREL | 21

1
2
3
4
5

Sections

Slurm Overview
Eagle Partitions by Feature
Job Dependencies and Job Arrays
Job Steps
Job Monitoring and Troubleshooting

NREL | 22

NREL | 23

 Building pipelines using Job Dependencies

Job Dependencies

• Job dependencies are used to defer the start of a job
until the specified dependencies have been satisfied.

• Many jobs can share the same dependency and these
jobs may even belong to different users.

• Once a job dependency fails due to the termination
state of a preceding job, the dependent job will
never run, even if the preceding job is requeued and
has a different termination state in a subsequent
execution.

NREL | 24

Job Dependency Options
• after:job_id[:job_id...]

This job can begin execution after the specified jobs have begun execution.

• afterany:job_id[:job_id...]
This job can begin execution after the specified jobs have terminated (regardless of state.)

• afternotok:job_id[:job_id...]
This job can begin execution after the specified jobs have terminated in some failed state.

• afterok:job_id[:job_id...]
This job can begin execution after the specified jobs have successfully executed.

• aftercorr:job_id
A task of this job array can begin execution after the corresponding task ID in the specified job has
completed successfully.

• singleton
This job can begin execution after any previously launched jobs sharing the same job name and
user have terminated.

NREL | 25

Dependency Sequence Example

NREL | 26

Submit sequence of batch jobs:

$ sbatch --ntasks=1 --time=10 pre_process.bash
Submitted batch job 1010
$ sbatch --ntasks=128 --time=60 --dependency=afterok:1010 do_work.bash
Submitted batch job 1011
$ sbatch --ntasks=1 --time=30 --dependency=afterok:1011 post_process.bash
Submitted batch job 1012
…
$ sbatch --begin=17:00:00 -n1 -t10 --dependency=afterany:1011,1012 night.bash
Submitted batch job 1013

NREL | 27

Job Arrays

Job Arrays

• Job arrays are an efficient mechanism of managing a
collection of batch jobs with identical resource
requirements

• Most Slurm commands can manage job arrays either as
individual elements (tasks) or as a single entity (e.g. delete
an entire job array in a single command)

• Job Arrays are only supported using the sbatch command

NREL | 28

Job Array examples
• All jobs must have the same initial options (e.g. size, time limit, etc.)

• It is possible to change some of these options after the job has begun execution
using the scontrol command specifying the JobID of the array or
individual ArrayJobID.

Submit a job array with index values between 0 and 100
$ sbatch --array=0-100 -N1 array.sh↲

Submit a job array with index values of 1, 3, 5 and 7
$ sbatch --array=1,3,5,7 -N1 array.sh

Submit a job array with index values between 1 and 7 with a step size
of 2 (i.e. 1, 3, 5 and 7)
$ sbatch --array=1-7:2 -N1 array.sh

NREL | 29

 NREL | 30

Job Steps

Job Step Best practices

• Each Slurm job can contain a multitude of job steps and
the overhead in Slurm for managing job steps is much
lower than that of individual jobs.

• Consider putting related work into a single Slurm job with
multiple job steps both for performance reasons and ease
of management.

• Similarly, it is easy to map several single-core jobs to
individual cores of a single job to conserve NREL hours.

NREL | 31

NREL | 32

Sequential Job Steps

#!/bin/bash

#SBATCH --account=<allocation>

#SBATCH --time=4:00:00

#SBATCH --job-name=steps

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=8

#SBATCH --output=job_output_filename.%j.out # %j will be replaced

with the job ID

By default, srun uses all job allocation resources (8 tasks each)
srun --cpu-bind=cores ./myjob.1a

srun --cpu-bind=cores ./myjob.1b

srun --cpu-bind=cores ./myjob.1c

NREL | 33

Parallel Job Steps

#!/bin/bash
#SBATCH --account=<allocation>
#SBATCH --time=4:00:00
#SBATCH --job-name=steps
#SBATCH --nodes=8
#SBATCH --output=job_output_filename.%j.out

Be sure to request enough nodes to run all job steps at the same time
srun -N 2 -n 44 -c 2 --cpu-bind=cores ./myjob.1 &
srun -N 4 -n 108 -c 2 --cpu-bind=cores ./myjob.2 &
srun -N 2 -n 40 -c 2 --cpu-bind=cores ./myjob.3 &
wait

Sections

1
2
3
4
5

Slurm Overview
Eagle Partitions by Feature
Job Dependencies and Job Arrays
Job Steps
Job Monitoring and Troubleshooting

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html
NREL | 34

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html

Job Information
• Show queued jobs by user
$ squeue -u <username> -l ↲

• Estimate when your job(s) will start
$ squeue --start -j <jobID>,<jobID>↲

$ scontrol show job <jobID>↲

• Show detailed job information

• Show hostnames of allocated nodes
$ scontrol show hostname↲

• Write submission script to file
$ scontrol write batch_script <jobID>↲

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html
NREL | 35

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html

NREL | 36

Job Information continued

• Use sacct for job accounting information (and exit codes)
• (Use sacct -e for a list of --format options)

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html

$ sacct --starttime 03/01 --format=JobID,Jobname,state,time,elapsed,ncpus,exit
JobID JobName State Timelimit Elapsed NCPUS ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------
605590 bash CANCELLED+ 04:00:00 00:00:00 250 0:0
605591 bash COMPLETED 04:01:00 00:00:07 9000 0:0
605591.exte+ extern COMPLETED 00:00:07 9000 0:0
605591.0 bash COMPLETED 00:00:04 9000 0:0
605595 bash FAILED 04:01:00 00:00:09 2160 127:0
605595.exte+ extern COMPLETED 00:00:09 2160 0:0
605595.0 bash FAILED 00:00:07 2160 127:0

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html

------------ ---------- ---------- ----------

Update Job Allocations using scontrol
The command scontrol can be used to update queued and running jobs

$ scontrol update jobid=526501 qos=high
$ sacct -j 526501 --format=jobid,partition,state,qos

JobID Partition State QOS

526501 short RUNNING high
526501.exte+ RUNNING
526501.0 COMPLETED

To pause a job: scontrol hold <JOBID>
To resume a job: scontrol resume <JOBID>
To cancel and rerun: scontrol requeue <JOBID>

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html
NREL | 37

https://www.nrel.gov/hpc/eagle-monitor-control-commands.html

Tracking Allocation Usage

-------------------- ---------- ---------- ----

Tracking Allocation Usage

alloc_tracker has been deprecated.
Please use hours_report instead.

[hpc_user@el1 ~]$ hours_report↲
Gathering data from database.....Done

…
User hpc_user has access to and used:
Allocation Handle System Hours Used Note

handle Peregrine 125
handle Eagle 320

NREL | 38

Advanced Tracking

hours_report --showall
• List each project, its PI, and its NREL hour usage.
hours_report --showall --drillbyuser
• List each project like above, but also show each member’s

contributing usage of allotted hours.
hours_report --help
• List usage instructions. hours_report is still in

development and new features will be documented here.

NREL | 39

Feedback is Appreciated!

If you have any suggestions to improve this presentation

we invite you to share with us at HPC-Help@nrel.gov

NREL | 40

mailto:HPC-Tickets@nrel.gov

NREL | 41

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency
and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

www.nrel.gov

Thank You

	Slurm Overview
	Eagle Partitions by Feature
	Job Dependencies and Job Arrays
	Job Steps
	Job Monitoring and Troubleshooting

